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Abstract. For an odd prime p, denote by np the least (positive) quadratic non-residue
modulo p. Vinogradov [15] proved that np = O(pα(log p)2), where α = 1/(2

√
e). Here we

present an elementary proof of this result due to Davenport and Erdős [4]. We shall also
discuss upper bounds for the least (positive) primitive root gp modulo p that are related to
Vinogradov’s work [16], and in particular, Hua’s result [11] that gp < 2m+1√p, where m
denotes the number of distinct prime factors of p− 1.

1. Introduction

Let p be an odd prime and let np denote the least (positive) quadratic non-residue modulo
p. By definition, we know that np must be prime. It is also easy to show that np ≤ (p−1)/2
for all p ≥ 5. Indeed, this is clear if p ≡ 1 (mod 4), since (−1/p) = 1, where (·/p) is the
Legendre symbol (mod p). Suppose now that p ≡ 3 (mod 4). If (p − 1)/2 is a quadratic
non-residue (mod p), then np ≤ (p − 1)/2. If (p − 1)/2 is a quadratic residue (mod p), say
x2 ≡ (p − 1)/2 (mod p) for some x ∈ Z, then 2x2 ≡ −1 (mod p). Since (−1/p) = −1, this
implies that 2 is a quadratic non-residue (mod p) and hence np = 2 ≤ (p− 1)/2. In the case
p ≡ 3 (mod 4), this argument actually shows that np ≤ max(d, (p − 1)/d), where d is any
positive divisor of p− 1. By choosing d to be the largest divisor of p− 1 with d ≤

√
p− 1,

we may expect that np is at most O(
√
p). Such a non-trivial upper bound for np (with an

extra log p factor) can be obtained from the Pólya-Vinogradov inequality:

M+N∑
n=M+1

χ(n)� √q log q,

where M,N are any integers, q ≥ 1 is a positive integer, and χ is any non-principle Dirichlet
character (mod q). Indeed, taking q = p, M = 1, N = np − 1 and χ(n) = (n/p) we obtain
np = O(

√
p log p). For an elementary proof of the Pólya-Vinogradov inequality, see [5, §23].

See also [8] for a short proof using Fourier analysis and for results on various generalized
character sums. Vinogradov [15] proved that np = O(pα(log p)2), where α = 1/(2

√
e). This

was further improved by Burgess [2] who showed that np = O(pα) for any given α > 1/(4
√
e).

Burgess derived this result based on Weil’s estimate for the complete sum of the Legendre
symbols of polynomial values: ∣∣∣∣∣

p∑
x=1

(
f(x)

p

)∣∣∣∣∣ ≤ (n− 1)
√
p,

where n ≥ 1 is an odd integer, p is an odd prime, and f ∈ Fp[x] is a polynomial of degree
n. The case n = 1 is trivial, for the sum on the left side is always 0. Weil’s estimate is
a consequence of the proof of the Riemann hypothesis for curves over finite fields due to
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Weil himself, though improvements have been obtained by Korobov [12] and Grechnikov
[9] using elementary methods. It was conjectured by Vinogradov that np = O(pε) for any
given ε > 0. Vinogradov’s conjecture is important in that it is intimately related to deep
questions about smooth numbers and the zeros of quadratic Dirichlet L-functions. Linnik
[13] proved this conjecture under the generalized Riemann hypothesis. He also showed by
means of the large sieve that for any ε > 0, the number of primes p ≤ N with np > N ε is
Oε(1). Thus Vinogradov’s conjecture holds for most primes. Later Ankeny [1] showed that
the generalized Riemann hypothesis implies np = O((log p)2).

In the next section of this note, we shall present an elementary proof of Vinogradov’s bound
due to Davenport and Erdős [4]. In fact, we shall prove the following slight improvement.

Theorem 1. np = O((
√
p log p)α) for all odd primes p, where α = 1/

√
e.

Among all the quadratic non-residues modulo a prime p, the primitive roots, namely the
generators of F×p := Fp\{0}, are of special interest. For a fixed prime p ≥ 3, denote by gp the
least (positive) primitive root modulo p. It is clear that gp is a quadratic non-residue (mod p)
and gp ≥ np. Let m denote the number of distinct prime factors of p − 1. Vinogradov [16]
proved that gp < 2m

√
p(p − 1)/ϕ(p − 1) for sufficiently large p, improving his earlier result

that gp < 2m
√
p log p. Here ϕ is Euler’s totient function. Hua [11] showed that gp < 2m+1√p.

Since 2m+1 = O(pε) for every fixed ε > 0, Hua’s result implies that gp = O(pα) for every fixed
α > 1/2. Using Brun’s sieve, Erdős [6] proved that gp <

√
p(log p)17 for sufficiently large p,

which is better than Hua’s estimate when m is large compared to log log p. Later Erdős and
Shapiro [7] improved Hua’s result slightly to gp = O(mc√p), where c > 0 is a constant. Using
his estimates for character sums, Burgess [3] obtained gp = O(pα) for any given α > 1/4.
However, these results are substantially weaker than expected, since Shoup [14] proved under
the assumption of the generalized Riemann hypothesis that gp = O((m log(m+ 1))4(log p)2).
We shall present a short proof of Hua’s result due to Erdős and Shapiro [7] in the last section.

Theorem 2. gp < 2m+1√p for all sufficiently large p, where m is the number of distinct
prime factors of p− 1.

2. Proof of Theorem 1

The proof of Theorem 1 depends on the following simple identity [4, Lemma 1]:

p∑
x=1

∣∣∣∣∣
h∑

n=1

χ(x+ n)

∣∣∣∣∣
2

= h(p− h), (1)

where 1 ≤ h ≤ p and χ is any non-principle Dirichlet character (mod p). To prove (1), we
expand the square of the inner sum and observe that the contribution from the diagonal
terms is

h∑
n=1

p∑
x=1

|χ(x+ n)|2 = h(p− 1).

Thus, to prove (1) it suffices to show that the contribution from the non-diagonal terms is

h∑
n1,n2=1
n1 6=n2

p∑
x=1

χ(x+ n1)χ(x+ n2) = −h(h− 1).
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This would follow if we can show
p∑

x=1

χ(x+ n1)χ(x+ n2) = −1 (2)

for all n1, n2 ∈ Z with n1 6≡ n2 (mod p). There are a few ways to prove (2). The proof
that Davenport and Erdős gave in their paper makes use of the substitution x + n1 ≡
y(x+ n2) (mod p), which gives a bijection between x 6≡ −n1 (mod p) and y 6≡ 1 (mod p). It
then follows from the orthogonality relation that

p∑
x=1

χ(x+ n1)χ(x+ n2) =

p∑
y=2

χ(y) = −χ(1) = −1.

The argument that the author came up with by himself goes as follows. It is easily seen that
(2) is equivalent to the statement that

p∑
x=1

χ(x)χ(x+ a) = −1 (3)

holds for all a ∈ (Z/pZ)×, where (Z/pZ)× is the multiplicative group of Z/pZ. Denote by
f(a) the expression on the left side of (3). Then

f(a) =

p∑
x=1

χ(ax)χ(ax+ a) =

p∑
x=1

χ(x)χ(x+ 1) = f(1).

Thus f is constant on (Z/pZ)×. By the orthogonality relation we have

f(a) =
1

p− 1

p∑
x=1

χ(x)

p−1∑
b=1

χ(x+ b) =
1

p− 1

∣∣∣∣∣
p∑

x=1

χ(x)

∣∣∣∣∣
2

− 1

p− 1

p∑
x=1

|χ(x)|2 = −1

for all a ∈ (Z/pZ)×. This completes the proof of (3), and hence the proof of (2).
It may be worth noting that Burgess obtained his estimate for the least quadratic non-

residue (mod p) by treating the more general 2r-th moment

p∑
x=1

∣∣∣∣∣
h∑

n=1

χ(x+ n)

∣∣∣∣∣
2r

with χ(n) = (n/p). Based on Weil’s estimate mentioned earlier, he showed that the above
sum is less than (2r)rphr + r(2

√
p+ 1)h2r. The reader is referred to [2] for further details.

We are now in a position to prove Theorem 1. Suppose p ≥ 5. Take h = b√p log pc ≥ 3
and χ(n) = (n/p), where b√p log pc is the integer part of

√
p log p. For every positive integer

1 ≤ x ≤ h, denote by N(x, x + h) the number of quadratic non-residues (mod p) in the
interval (x, x+ h]. Observe that

h∑
n=1

χ(x+ n) = h− 2N(x, x+ h).

Since every positive quadratic non-residue (mod p) must have a prime divisor q which satisfies
(q/p) = −1 and hence satisfies q ≥ np, it follows that

N(x, x+ h) ≤ #{m ∈ (x, x+ h] : m has a prime divisor q ≥ np}.
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If np > 2h, then N(x, x+ h) = 0 for all 1 ≤ x ≤ h. Thus we have

h∑
n=1

χ(x+ n) = h

for all 1 ≤ x ≤ h. By (1) we have h3 ≤ h(p− h), i.e., h2 + h− p ≤ 0. But this is false, since

h2 + h >
(h+ 1)2

2
>
p(log p)2

2
> p.

Hence we must have np ≤ 2h. This yields the bound that we previously derived from
the Pólya-Vinogradov inequality. By Chebyshev’s estimate [10, Theorem 7] and Mertens’
theorem [10, Theorem 427] we have

N(x, x+ h) ≤
∑

np≤q≤2h

(⌊
x+ h

q

⌋
−
⌊
x

q

⌋)
= h

∑
np≤q≤2h

1

q
+O

(
h

log h

)

= h(log log 2h− log log np) +O

(
h

log h

)
.

Hence
h∑

n=1

χ(x+ n) ≥ h

(
1− 2 log log 2h+ 2 log log np +O

(
1

log h

))
. (4)

If the right side of (4) is negative, then we have

log np
log 2h

< e−1/2+O(1/ log h) = e−1/2+log(1+O(1/ log h)) = e−1/2
(

1 +O

(
1

log h

))
,

which implies that log np < e−1/2 log 2h + O(1). This gives np = O((
√
p log p)α), where

α = 1/
√
e. Suppose now that the right side of (4) is non-negative. By (3) we obtain

h3
(

1− 2 log log 2h+ 2 log log np +O

(
1

log h

))2

≤ h(p− h) < hp.

It follows that

1− 2 log log 2h+ 2 log log np +O

(
1

log h

)
<

√
p

h
<

2
√
p

h+ 1
<

2

log p
<

2

log h
.

Thus we have

1− 2 log log 2h+ 2 log log np +O

(
1

log h

)
< 0.

We can conclude as before that np = O((
√
p log p)α). This finishes the proof of Theorem 1.

3. Proof of Theorem 2

The proof of Theorem 2 depends on a simple inequality for character sums [7, Lemma].
It states that if A,B ⊆ Fp with cardinality |A| and |B|, respectively, then∣∣∣∣∣∑

a∈A

∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤√p|A||B| (5)
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for any non-principle Dirichlet character (mod p). To prove this, we consider the Gauss sum

τ(χ) :=
∑
h∈Fp

χ(h)ep(h),

where ep(h) := e2πih/p. It can be shown easily that

χ(h′)τ(χ̄) =
∑
h∈Fp

χ(h)ep(hh
′).

and that |τ(χ)| = √p (see [5, §2]). Thus we have

τ(χ̄)
∑
a∈A

∑
b∈B

χ(a+ b) =
∑
h∈Fp

χ(h)

(∑
a∈A

ep(ha)

)(∑
b∈B

ep(hb)

)
.

It follows that
√
p

∣∣∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤∑
h∈Fp

∣∣∣∣∣∑
a∈A

ep(ha)

∣∣∣∣∣
∣∣∣∣∣∑
b∈B

ep(hb)

∣∣∣∣∣ .
By Cauchy-Schwarz inequality, the right side is

≤

∑
h∈Fp

∣∣∣∣∣∑
a∈A

ep(ha)

∣∣∣∣∣
2
 1

2
∑
h∈Fp

∣∣∣∣∣∑
b∈B

ep(hb)

∣∣∣∣∣
2
 1

2

≤ p
√
|A||B|,

since ∑
h∈Fp

∣∣∣∣∣∑
a∈A

ep(ha)

∣∣∣∣∣
2

=
∑
a,a′∈A

∑
h∈Fp

ep((a− a′)h) =
∑
a∈A

p = p|A|

and similarly ∑
h∈Fp

∣∣∣∣∣∑
b∈B

ep(hb)

∣∣∣∣∣
2

= p|B|.

Hence
√
p

∣∣∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤ p
√
|A||B|,

which gives (5).
Another ingredient needed for the proof of Theorem 2 concerns the values of the sum S(h)

defined for every h ∈ Z with gcd(h, p) = 1 by

S(h) :=
∑
d|p−1

µ(d)

ϕ(d)

∑
ord(χ)=d

χ(h),

where µ is the Möbius function and the inner sum is over all characters χ of order d in the
character group (mod p). Let g be any primitive root (mod p), so that h ≡ gv (mod p) for
some 0 ≤ v < p. For every d | (p− 1), put ud := gcd(v, d). Then∑

ord(χ)=d

χ(h) =
d∑

k=1
gcd(k,d)=1

ed(kv) = cd(v),
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where cd(v) is Ramanujan’s sum which is multiplicative as a function of d. Hence

S(h) =
∑
d|p−1

µ(d)cd(v)

ϕ(d)
.

Note that ∑
d|n

µ(d)cd(v)

ϕ(d)

is multiplicative as a function of n. By [10, Theorem 272] we have

cd(v) =
µ(d/ud)ϕ(d)

ϕ(d/ud)
.

Let q be a prime and r ≥ 1 a positive integer. Then∑
d|qr

µ(d)cd(v)

ϕ(d)
= 1− µ(q/uq)

ϕ(q/uq)
.

It follows that ∑
d|n

µ(d)cd(v)

ϕ(d)
=
∏
q|n

(
1− µ(q/uq)

ϕ(q/uq)

)
,

If h is a primitive root (mod p), then uq = 1 for all q | (p− 1). Thus we have

S(h) =
∏

q|(p−1)

(
1 +

1

q − 1

)
=

p− 1

ϕ(p− 1)
.

On the other hand, if h is not a primitive root (mod p), then up−1 > 1. This implies that
there exists a prime divisor q of p − 1 for which uq = q, so that 1 − µ(q/uq)/ϕ(q/uq) = 0.
Therefore, we have S(h) = 0.

We are now ready to prove Theorem 2. We may assume that gp ≥ 3. Note that S(h) = 0
for all 1 ≤ h < gp. Taking A = B = {1, 2, ..., b(gp − 1)/2c}, where bxc is the integer part of
x ∈ R, we obtain

0 =
∑
a∈A

∑
b∈B

S(a+ b) =
∑
d|p−1

µ(d)

ϕ(d)

∑
ord(χ)=d

∑
a∈A

∑
b∈B

χ(a+ b)

= b(gp − 1)/2c2 +
∑
d|p−1
d>1

µ(d)

ϕ(d)

∑
ord(χ)=d

∑
a∈A

∑
b∈B

χ(a+ b).

It follows that

b(gp − 1)/2c2 ≤
∑
d|p−1
d>1

|µ(d)|
ϕ(d)

∑
ord(χ)=d

∣∣∣∣∣∑
a∈A

∑
b∈B

χ(a+ b)

∣∣∣∣∣ .
By (5) we have

b(gp − 1)/2c2 ≤ √pb(gp − 1)/2c
∑
d|p−1
d>1

|µ(d)|,
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where we have used the fact that the number of elements of F×p of order d equals ϕ(d) (see
[10, Theorem 110]). Note that the sum on the right side represents the number of square-free
positive divisors d > 1 of p− 1. It follows that

b(gp − 1)/2c ≤ (2m − 1)
√
p.

But ⌊
gp − 1

2

⌋
+ 1 ≥ gp − 2

2
+ 1 =

gp
2
.

Therefore, we have
gp ≤ 2(2m − 1)

√
p+ 2 < 2m+1√p.

This completes the proof of Theorem 2.
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