VINOGRADOV'S ESTIMATES FOR THE LEAST QUADRATIC NON-RESIDUES

STEVE FAN

Abstract

For an odd prime p, denote by n_{p} the least (positive) quadratic non-residue modulo p. Vinogradov [15] proved that $n_{p}=O\left(p^{\alpha}(\log p)^{2}\right)$, where $\alpha=1 /(2 \sqrt{e})$. Here we present an elementary proof of this result due to Davenport and Erdős [4]. We shall also discuss upper bounds for the least (positive) primitive root g_{p} modulo p that are related to Vinogradov's work [16], and in particular, Hua's result [11] that $g_{p}<2^{m+1} \sqrt{p}$, where m denotes the number of distinct prime factors of $p-1$.

1. Introduction

Let p be an odd prime and let n_{p} denote the least (positive) quadratic non-residue modulo p. By definition, we know that n_{p} must be prime. It is also easy to show that $n_{p} \leq(p-1) / 2$ for all $p \geq 5$. Indeed, this is clear if $p \equiv 1(\bmod 4)$, since $(-1 / p)=1$, where (\cdot / p) is the Legendre symbol $(\bmod p)$. Suppose now that $p \equiv 3(\bmod 4)$. If $(p-1) / 2$ is a quadratic non-residue $(\bmod p)$, then $n_{p} \leq(p-1) / 2$. If $(p-1) / 2$ is a quadratic residue $(\bmod p)$, say $x^{2} \equiv(p-1) / 2(\bmod p)$ for some $x \in \mathbb{Z}$, then $2 x^{2} \equiv-1(\bmod p)$. Since $(-1 / p)=-1$, this implies that 2 is a quadratic non-residue $(\bmod p)$ and hence $n_{p}=2 \leq(p-1) / 2$. In the case $p \equiv 3(\bmod 4)$, this argument actually shows that $n_{p} \leq \max (d,(p-1) / d)$, where d is any positive divisor of $p-1$. By choosing d to be the largest divisor of $p-1$ with $d \leq \sqrt{p-1}$, we may expect that n_{p} is at most $O(\sqrt{p})$. Such a non-trivial upper bound for n_{p} (with an extra $\log p$ factor) can be obtained from the Pólya-Vinogradov inequality:

$$
\sum_{n=M+1}^{M+N} \chi(n) \ll \sqrt{q} \log q,
$$

where M, N are any integers, $q \geq 1$ is a positive integer, and χ is any non-principle Dirichlet character $(\bmod q)$. Indeed, taking $q=p, M=1, N=n_{p}-1$ and $\chi(n)=(n / p)$ we obtain $n_{p}=O(\sqrt{p} \log p)$. For an elementary proof of the Pólya-Vinogradov inequality, see [5, §23]. See also [8] for a short proof using Fourier analysis and for results on various generalized character sums. Vinogradov [15] proved that $n_{p}=O\left(p^{\alpha}(\log p)^{2}\right)$, where $\alpha=1 /(2 \sqrt{e})$. This was further improved by Burgess [2] who showed that $n_{p}=O\left(p^{\alpha}\right)$ for any given $\alpha>1 /(4 \sqrt{e})$. Burgess derived this result based on Weil's estimate for the complete sum of the Legendre symbols of polynomial values:

$$
\left|\sum_{x=1}^{p}\left(\frac{f(x)}{p}\right)\right| \leq(n-1) \sqrt{p},
$$

where $n \geq 1$ is an odd integer, p is an odd prime, and $f \in \mathbb{F}_{p}[x]$ is a polynomial of degree n. The case $n=1$ is trivial, for the sum on the left side is always 0 . Weil's estimate is a consequence of the proof of the Riemann hypothesis for curves over finite fields due to

Weil himself, though improvements have been obtained by Korobov [12] and Grechnikov [9] using elementary methods. It was conjectured by Vinogradov that $n_{p}=O\left(p^{\epsilon}\right)$ for any given $\epsilon>0$. Vinogradov's conjecture is important in that it is intimately related to deep questions about smooth numbers and the zeros of quadratic Dirichlet L-functions. Linnik [13] proved this conjecture under the generalized Riemann hypothesis. He also showed by means of the large sieve that for any $\epsilon>0$, the number of primes $p \leq N$ with $n_{p}>N^{\epsilon}$ is $O_{\epsilon}(1)$. Thus Vinogradov's conjecture holds for most primes. Later Ankeny [1] showed that the generalized Riemann hypothesis implies $n_{p}=O\left((\log p)^{2}\right)$.

In the next section of this note, we shall present an elementary proof of Vinogradov's bound due to Davenport and Erdős [4]. In fact, we shall prove the following slight improvement.
Theorem 1. $n_{p}=O\left((\sqrt{p} \log p)^{\alpha}\right)$ for all odd primes p, where $\alpha=1 / \sqrt{e}$.
Among all the quadratic non-residues modulo a prime p, the primitive roots, namely the generators of $\mathbb{F}_{p}^{\times}:=\mathbb{F}_{p} \backslash\{0\}$, are of special interest. For a fixed prime $p \geq 3$, denote by g_{p} the least (positive) primitive root modulo p. It is clear that g_{p} is a quadratic non-residue $(\bmod p)$ and $g_{p} \geq n_{p}$. Let m denote the number of distinct prime factors of $p-1$. Vinogradov [16] proved that $g_{p}<2^{m} \sqrt{p}(p-1) / \varphi(p-1)$ for sufficiently large p, improving his earlier result that $g_{p}<2^{m} \sqrt{p} \log p$. Here φ is Euler's totient function. Hua [11] showed that $g_{p}<2^{m+1} \sqrt{p}$. Since $2^{m+1}=O\left(p^{\epsilon}\right)$ for every fixed $\epsilon>0$, Hua's result implies that $g_{p}=O\left(p^{\alpha}\right)$ for every fixed $\alpha>1 / 2$. Using Brun's sieve, Erdős [6] proved that $g_{p}<\sqrt{p}(\log p)^{17}$ for sufficiently large p, which is better than Hua's estimate when m is large compared to $\log \log p$. Later Erdős and Shapiro [7] improved Hua's result slightly to $g_{p}=O\left(m^{c} \sqrt{p}\right)$, where $c>0$ is a constant. Using his estimates for character sums, Burgess [3] obtained $g_{p}=O\left(p^{\alpha}\right)$ for any given $\alpha>1 / 4$. However, these results are substantially weaker than expected, since Shoup [14] proved under the assumption of the generalized Riemann hypothesis that $g_{p}=O\left((m \log (m+1))^{4}(\log p)^{2}\right)$. We shall present a short proof of Hua's result due to Erdős and Shapiro [7] in the last section.
Theorem 2. $g_{p}<2^{m+1} \sqrt{p}$ for all sufficiently large p, where m is the number of distinct prime factors of $p-1$.

2. Proof of Theorem 1

The proof of Theorem 1 depends on the following simple identity [4, Lemma 1]:

$$
\begin{equation*}
\sum_{x=1}^{p}\left|\sum_{n=1}^{h} \chi(x+n)\right|^{2}=h(p-h) \tag{1}
\end{equation*}
$$

where $1 \leq h \leq p$ and χ is any non-principle Dirichlet character $(\bmod p)$. To prove (1), we expand the square of the inner sum and observe that the contribution from the diagonal terms is

$$
\sum_{n=1}^{h} \sum_{x=1}^{p}|\chi(x+n)|^{2}=h(p-1)
$$

Thus, to prove (1) it suffices to show that the contribution from the non-diagonal terms is

$$
\sum_{\substack{n_{1}, n_{2}=1 \\ n_{1} \neq n_{2}}}^{h} \sum_{x=1}^{p} \chi\left(x+n_{1}\right) \bar{\chi}\left(x+n_{2}\right)=-h(h-1)
$$

This would follow if we can show

$$
\begin{equation*}
\sum_{x=1}^{p} \chi\left(x+n_{1}\right) \bar{\chi}\left(x+n_{2}\right)=-1 \tag{2}
\end{equation*}
$$

for all $n_{1}, n_{2} \in \mathbb{Z}$ with $n_{1} \not \equiv n_{2}(\bmod p)$. There are a few ways to prove (2). The proof that Davenport and Erdős gave in their paper makes use of the substitution $x+n_{1} \equiv$ $y\left(x+n_{2}\right)(\bmod p)$, which gives a bijection between $x \not \equiv-n_{1}(\bmod p)$ and $y \not \equiv 1(\bmod p)$. It then follows from the orthogonality relation that

$$
\sum_{x=1}^{p} \chi\left(x+n_{1}\right) \bar{\chi}\left(x+n_{2}\right)=\sum_{y=2}^{p} \chi(y)=-\chi(1)=-1 .
$$

The argument that the author came up with by himself goes as follows. It is easily seen that (2) is equivalent to the statement that

$$
\begin{equation*}
\sum_{x=1}^{p} \chi(x) \bar{\chi}(x+a)=-1 \tag{3}
\end{equation*}
$$

holds for all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, where $(\mathbb{Z} / p \mathbb{Z})^{\times}$is the multiplicative group of $\mathbb{Z} / p \mathbb{Z}$. Denote by $f(a)$ the expression on the left side of (3). Then

$$
f(a)=\sum_{x=1}^{p} \chi(a x) \bar{\chi}(a x+a)=\sum_{x=1}^{p} \chi(x) \bar{\chi}(x+1)=f(1) .
$$

Thus f is constant on $(\mathbb{Z} / p \mathbb{Z})^{\times}$. By the orthogonality relation we have

$$
f(a)=\frac{1}{p-1} \sum_{x=1}^{p} \chi(x) \sum_{b=1}^{p-1} \bar{\chi}(x+b)=\frac{1}{p-1}\left|\sum_{x=1}^{p} \chi(x)\right|^{2}-\frac{1}{p-1} \sum_{x=1}^{p}|\chi(x)|^{2}=-1
$$

for all $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. This completes the proof of (3), and hence the proof of (2).
It may be worth noting that Burgess obtained his estimate for the least quadratic nonresidue $(\bmod p)$ by treating the more general $2 r$-th moment

$$
\sum_{x=1}^{p}\left|\sum_{n=1}^{h} \chi(x+n)\right|^{2 r}
$$

with $\chi(n)=(n / p)$. Based on Weil's estimate mentioned earlier, he showed that the above sum is less than $(2 r)^{r} p h^{r}+r(2 \sqrt{p}+1) h^{2 r}$. The reader is referred to [2] for further details.

We are now in a position to prove Theorem 1. Suppose $p \geq 5$. Take $h=\lfloor\sqrt{p} \log p\rfloor \geq 3$ and $\chi(n)=(n / p)$, where $\lfloor\sqrt{p} \log p\rfloor$ is the integer part of $\sqrt{p} \log p$. For every positive integer $1 \leq x \leq h$, denote by $N(x, x+h)$ the number of quadratic non-residues $(\bmod p)$ in the interval $(x, x+h]$. Observe that

$$
\sum_{n=1}^{h} \chi(x+n)=h-2 N(x, x+h)
$$

Since every positive quadratic non-residue $(\bmod p)$ must have a prime divisor q which satisfies ($q / p)=-1$ and hence satisfies $q \geq n_{p}$, it follows that

$$
N(x, x+h) \leq \#\left\{m \in(x, x+h]: m \text { has a prime divisor } q \geq n_{p}\right\}
$$

If $n_{p}>2 h$, then $N(x, x+h)=0$ for all $1 \leq x \leq h$. Thus we have

$$
\sum_{n=1}^{h} \chi(x+n)=h
$$

for all $1 \leq x \leq h$. By (1) we have $h^{3} \leq h(p-h)$, i.e., $h^{2}+h-p \leq 0$. But this is false, since

$$
h^{2}+h>\frac{(h+1)^{2}}{2}>\frac{p(\log p)^{2}}{2}>p .
$$

Hence we must have $n_{p} \leq 2 h$. This yields the bound that we previously derived from the Pólya-Vinogradov inequality. By Chebyshev's estimate [10, Theorem 7] and Mertens' theorem [10, Theorem 427] we have

$$
\begin{aligned}
N(x, x+h) \leq \sum_{n_{p} \leq q \leq 2 h}\left(\left\lfloor\frac{x+h}{q}\right\rfloor-\left\lfloor\frac{x}{q}\right\rfloor\right) & =h \sum_{n_{p} \leq q \leq 2 h} \frac{1}{q}+O\left(\frac{h}{\log h}\right) \\
& =h\left(\log \log 2 h-\log \log n_{p}\right)+O\left(\frac{h}{\log h}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{n=1}^{h} \chi(x+n) \geq h\left(1-2 \log \log 2 h+2 \log \log n_{p}+O\left(\frac{1}{\log h}\right)\right) \tag{4}
\end{equation*}
$$

If the right side of (4) is negative, then we have

$$
\frac{\log n_{p}}{\log 2 h}<e^{-1 / 2+O(1 / \log h)}=e^{-1 / 2+\log (1+O(1 / \log h))}=e^{-1 / 2}\left(1+O\left(\frac{1}{\log h}\right)\right)
$$

which implies that $\log n_{p}<e^{-1 / 2} \log 2 h+O(1)$. This gives $n_{p}=O\left((\sqrt{p} \log p)^{\alpha}\right)$, where $\alpha=1 / \sqrt{e}$. Suppose now that the right side of (4) is non-negative. By (3) we obtain

$$
h^{3}\left(1-2 \log \log 2 h+2 \log \log n_{p}+O\left(\frac{1}{\log h}\right)\right)^{2} \leq h(p-h)<h p
$$

It follows that

$$
1-2 \log \log 2 h+2 \log \log n_{p}+O\left(\frac{1}{\log h}\right)<\frac{\sqrt{p}}{h}<\frac{2 \sqrt{p}}{h+1}<\frac{2}{\log p}<\frac{2}{\log h}
$$

Thus we have

$$
1-2 \log \log 2 h+2 \log \log n_{p}+O\left(\frac{1}{\log h}\right)<0
$$

We can conclude as before that $n_{p}=O\left((\sqrt{p} \log p)^{\alpha}\right)$. This finishes the proof of Theorem 1 .

3. Proof of Theorem 2

The proof of Theorem 2 depends on a simple inequality for character sums [7, Lemma]. It states that if $A, B \subseteq \mathbb{F}_{p}$ with cardinality $|A|$ and $|B|$, respectively, then

$$
\begin{equation*}
\left|\sum_{a \in A} \sum_{b \in B} \chi(a+b)\right| \leq \sqrt{p|A||B|} \tag{5}
\end{equation*}
$$

for any non-principle Dirichlet character $(\bmod p)$. To prove this, we consider the Gauss sum

$$
\tau(\chi):=\sum_{h \in \mathbb{F}_{p}} \chi(h) e_{p}(h),
$$

where $e_{p}(h):=e^{2 \pi i h / p}$. It can be shown easily that

$$
\chi\left(h^{\prime}\right) \tau(\bar{\chi})=\sum_{h \in \mathbb{F}_{p}} \chi(h) e_{p}\left(h h^{\prime}\right) .
$$

and that $|\tau(\chi)|=\sqrt{p}($ see $[5, \S 2])$. Thus we have

$$
\tau(\bar{\chi}) \sum_{a \in A} \sum_{b \in B} \chi(a+b)=\sum_{h \in \mathbb{F}_{p}} \chi(h)\left(\sum_{a \in A} e_{p}(h a)\right)\left(\sum_{b \in B} e_{p}(h b)\right) .
$$

It follows that

$$
\sqrt{p}\left|\sum_{a \in A} \sum_{b \in B} \chi(a+b)\right| \leq \sum_{h \in \mathbb{F}_{p}}\left|\sum_{a \in A} e_{p}(h a)\right|\left|\sum_{b \in B} e_{p}(h b)\right| .
$$

By Cauchy-Schwarz inequality, the right side is

$$
\leq\left(\sum_{h \in \mathbb{F}_{p}}\left|\sum_{a \in A} e_{p}(h a)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{h \in \mathbb{F}_{p}}\left|\sum_{b \in B} e_{p}(h b)\right|^{2}\right)^{\frac{1}{2}} \leq p \sqrt{|A||B|},
$$

since

$$
\sum_{h \in \mathbb{F}_{p}}\left|\sum_{a \in A} e_{p}(h a)\right|^{2}=\sum_{a, a^{\prime} \in A} \sum_{h \in \mathbb{F}_{p}} e_{p}\left(\left(a-a^{\prime}\right) h\right)=\sum_{a \in A} p=p|A|
$$

and similarly

$$
\sum_{h \in \mathbb{F}_{p}}\left|\sum_{b \in B} e_{p}(h b)\right|^{2}=p|B|
$$

Hence

$$
\sqrt{p}\left|\sum_{a \in A} \sum_{b \in B} \chi(a+b)\right| \leq p \sqrt{|A||B|},
$$

which gives (5).
Another ingredient needed for the proof of Theorem 2 concerns the values of the sum $S(h)$ defined for every $h \in \mathbb{Z}$ with $\operatorname{gcd}(h, p)=1$ by

$$
S(h):=\sum_{d \mid p-1} \frac{\mu(d)}{\varphi(d)} \sum_{\operatorname{ord}(\chi)=d} \chi(h),
$$

where μ is the Möbius function and the inner sum is over all characters χ of order d in the character group $(\bmod p)$. Let g be any primitive root $(\bmod p)$, so that $h \equiv g^{v}(\bmod p)$ for some $0 \leq v<p$. For every $d \mid(p-1)$, put $u_{d}:=\operatorname{gcd}(v, d)$. Then

$$
\sum_{\operatorname{ord}(\chi)=d} \chi(h)=\sum_{\substack{k=1 \\ \operatorname{gcd}(k, d)=1}}^{d} e_{d}(k v)=c_{d}(v)
$$

where $c_{d}(v)$ is Ramanujan's sum which is multiplicative as a function of d. Hence

$$
S(h)=\sum_{d \mid p-1} \frac{\mu(d) c_{d}(v)}{\varphi(d)}
$$

Note that

$$
\sum_{d \mid n} \frac{\mu(d) c_{d}(v)}{\varphi(d)}
$$

is multiplicative as a function of n. By [10, Theorem 272] we have

$$
c_{d}(v)=\frac{\mu\left(d / u_{d}\right) \varphi(d)}{\varphi\left(d / u_{d}\right)}
$$

Let q be a prime and $r \geq 1$ a positive integer. Then

$$
\sum_{d \mid q^{r}} \frac{\mu(d) c_{d}(v)}{\varphi(d)}=1-\frac{\mu\left(q / u_{q}\right)}{\varphi\left(q / u_{q}\right)}
$$

It follows that

$$
\sum_{d \mid n} \frac{\mu(d) c_{d}(v)}{\varphi(d)}=\prod_{q \mid n}\left(1-\frac{\mu\left(q / u_{q}\right)}{\varphi\left(q / u_{q}\right)}\right)
$$

If h is a primitive root $(\bmod p)$, then $u_{q}=1$ for all $q \mid(p-1)$. Thus we have

$$
S(h)=\prod_{q \mid(p-1)}\left(1+\frac{1}{q-1}\right)=\frac{p-1}{\varphi(p-1)}
$$

On the other hand, if h is not a primitive root $(\bmod p)$, then $u_{p-1}>1$. This implies that there exists a prime divisor q of $p-1$ for which $u_{q}=q$, so that $1-\mu\left(q / u_{q}\right) / \varphi\left(q / u_{q}\right)=0$. Therefore, we have $S(h)=0$.

We are now ready to prove Theorem 2. We may assume that $g_{p} \geq 3$. Note that $S(h)=0$ for all $1 \leq h<g_{p}$. Taking $A=B=\left\{1,2, \ldots,\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor\right\}$, where $\lfloor x\rfloor$ is the integer part of $x \in \mathbb{R}$, we obtain

$$
\begin{aligned}
0=\sum_{a \in A} \sum_{b \in B} S(a+b) & =\sum_{d \mid p-1} \frac{\mu(d)}{\varphi(d)} \sum_{\operatorname{ord}(\chi)=d} \sum_{a \in A} \sum_{b \in B} \chi(a+b) \\
& =\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor^{2}+\sum_{\substack{d \mid p-1 \\
d>1}} \frac{\mu(d)}{\varphi(d)} \sum_{\operatorname{ord}(\chi)=d} \sum_{a \in A} \sum_{b \in B} \chi(a+b) .
\end{aligned}
$$

It follows that

$$
\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor^{2} \leq \sum_{\substack{d \mid p-1 \\ d>1}} \frac{|\mu(d)|}{\varphi(d)} \sum_{\operatorname{ord}(\chi)=d}\left|\sum_{a \in A} \sum_{b \in B} \chi(a+b)\right|
$$

By (5) we have

$$
\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor^{2} \leq \sqrt{p}\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor \sum_{\substack{d \mid p-1 \\ d>1}}|\mu(d)|,
$$

where we have used the fact that the number of elements of \mathbb{F}_{p}^{\times}of order d equals $\varphi(d)$ (see [10, Theorem 110]). Note that the sum on the right side represents the number of square-free positive divisors $d>1$ of $p-1$. It follows that

$$
\left\lfloor\left(g_{p}-1\right) / 2\right\rfloor \leq\left(2^{m}-1\right) \sqrt{p}
$$

But

$$
\left\lfloor\frac{g_{p}-1}{2}\right\rfloor+1 \geq \frac{g_{p}-2}{2}+1=\frac{g_{p}}{2} .
$$

Therefore, we have

$$
g_{p} \leq 2\left(2^{m}-1\right) \sqrt{p}+2<2^{m+1} \sqrt{p}
$$

This completes the proof of Theorem 2 .

References

[1] N. C. Ankeny, The least quadratic non-residue, Ann. of Math. 55 (2) (1952), 65-72.
[2] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106-112.
[3] D. A. Burgess, On character sums and primitive roots, Proc. Lond. Math. Soc. 12 (3) (1962), 179-192.
[4] H. Davenport and P. Erdős, The distribution of quadratic and higher residues. Publ. Math. Debrecen 2 (1952), 252-265.
[5] H. Davenport, Multiplicative Number Theory, 3rd. ed., Grad. Texts in Math., vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by H. L. Montgomery.
[6] P. Erdős, On the least primitive root of a prime, Bull. Lond. Math. Soc. 55 (1945), 131-132.
[7] P. Erdős and H. N. Shapiro, On the least primitive root of a prime, Pacific J. Math. 7 (1957), 861-865.
[8] J. Friedlander and H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc. 119 (1993), 365-372.
[9] E. A. Grechnikov, An estimate for the sum of Legendre symbols, Math. Notes 88 (2010), 819-826.
[10] G. H. Hardy and E. M. Wright, An introduction to the Theory of Numbers, 6th. ed., Oxford Univ. Press, Oxford, 2008. Revised by D. R. Heath-Brown and J.H. Silverman; With a forward by A. J. Wiles.
[11] L.-K. Hua, On the least primitive root of a prime, Bull. Amer. Math. Soc. 48 (1942), 726-730.
[12] P. M. Korobov, An estimate of the sum of the Legendre symbols, Dokl. Akad. Nauk SSSR 196 (4) (1971), 764-767.
[13] U. V. Linnik, A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 119-120.
[14] V. Shoup, Searching for primitive roots in finite fields, Math. Comp. 58 (1992), 369-380.
[15] I. M. Vinogradov, Sur la distribution des résidus et des non-résidus des puissances, Journal PhysicoMath. Soc. Univ. Perm, no. 1 (1918), 94-96.
[16] I. M. Vinogradov, On the least primitive root of a prime (in Russian), Dokl. Akad. Nauk SSSR 1 (1930), 7-11.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Email address: steve.fan.gr@dartmouth.edu

